Viral emergence and pandemic preparedness in a One Health framework

0
Viral emergence and pandemic preparedness in a One Health framework
  • Adepoju, P. Mpox declared a public health emergency. Lancet 404, e1–e2 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Lawrence, O. G., Ashish, K. J. & Alexandra, F. The Mpox global health emergency — a time for solidarity and equity. N. Engl. J. Med. 391, 1265–1267 (2024).

    Article 

    Google Scholar 

  • Taylor, L. PAHO: Americas report record dengue and Oropouche cases. BMJ 387, q2808 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Caserta, L. C. et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 634, 669–676 (2024). This study reports the unprecedented spillover and cow-to-cow transmission of HPAI H5N1 in US dairy cattle, highlighting a critical shift in the host range of the virus.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Authority, E. F. S. et al. Avian influenza overview December 2024–March 2025. EFSA J. 23, e9352 (2025).

    Google Scholar 

  • Krammer, F. & Schultz-Cherry, S. We need to keep an eye on avian influenza. Nat. Rev. Immunol. 23, 267–268 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sah, R. et al. Concerns on H5N1 avian influenza given the outbreak in U.S. dairy cattle. Lancet Reg. Health Am. 35, 100785 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuiken, T., Fouchier, R. A. M. & Koopmans, M. P. G. Being ready for the next influenza pandemic? Lancet Infect. Dis. 23, 398–399 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Adisasmito, W. B. et al. One Health: a new definition for a sustainable and healthy future. PLoS Pathog. 18, e1010537 (2022). In this paper the OHHLEP presents an updated definition of One Health, which is now widely adopted.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machalaba, C. M. & Karesh, W. B. Emerging infectious disease risk: shared drivers with environmental change. Rev. Sci. Tech. 36, 435–444 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engering, A., Hogerwerf, L. & Slingenbergh, J. Pathogen–host–environment interplay and disease emergence. Emerg. Microbes Infect. 2, 1–7 (2013).

    Article 

    Google Scholar 

  • Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • European Commission: Group of Chief Scientific Advisors and Directorate-General for Research and Innovation. One Health Governance in the European Union (Publications Office of the European Union, 2024).

  • Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875 (2022). This study presents a systematic review of peer reviewed publications that study the effects of climate change on infectious diseases that impact humans.

    Article 

    Google Scholar 

  • IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022). This review highlights that climate change impacts interactions and spillover events not only at the human–animal interface but also between animal species.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Greenville, A. C., Wardle, G. M. & Dickman, C. R. Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature. Ecol. Evol. 2, 2645–2658 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rushing, C. S., Royle, J. A., Ziolkowski, D. J. & Pardieck, K. L. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proc. Natl Acad. Sci. USA 117, 12897–12903 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Musmanni, G. D. The delta blues: why climate change adaptation is crucial in the world’s deltas. Global Centre of Adaptation (2022).

  • European Environment Agency. Urban Adaptation in Europe: What Works? (EEA, 2024).

  • Geneletti, D. & Zardo, L. Ecosystem-based adaptation in cities: an analysis of European urban climate adaptation plans. Land Use Policy 50, 38–47 (2016).

    Article 

    Google Scholar 

  • Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W. & Takken, W. Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 95, 607–608 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocklöv, J. et al. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. Lancet Reg. Health Eur. 32, 100701 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Cock, M. P., Esser, H. J., van der Poel, W. H. M., Sprong, H. & Maas, M. Higher rat abundance in greener urban areas. Urban Ecosystems 27, 1389–1401 (2024).

    Article 

    Google Scholar 

  • Traweger, D., Travnitzky, R., Moser, C., Walzer, C. & Bernatzky, G. Habitat preferences and distribution of the brown rat (Rattus norvegicus Berk.) in the city of Salzburg (Austria): implications for an urban rat management. J. Pest. Sci. 79, 113–125 (2006).

    Article 

    Google Scholar 

  • de Cock, M. P. et al. Increased rat-borne zoonotic disease hazard in greener urban areas. Sci. Total. Environ. 896, 165069 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Kibret, S., McCartney, M., Lautze, J., Nhamo, L. & Yan, G. The impact of large and small dams on malaria transmission in four basins in Africa. Sci. Rep. 11, 13355 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Souza, W. M. & Weaver, S. C. Effects of climate change and human activities on vector-borne diseases. Nat. Rev. Microbiol. 22, 476–491 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020). This study shows how climate change may have different effects across regions, vectors and pathogens.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • FAOSTAT. Land Use Statistics and Indicators 2000–2021. Global, Regional and Country Trends Analytical Brief 71 (FAO, 2023).

  • Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

    Article 

    Google Scholar 

  • Livestock, Environment and Development Initiative. Livestock’s Long Shadow: Environmental Issues and Options (LEAD & FAO, 2006).

  • Greenspoon, L. et al. The global biomass of wild mammals. Proc. Natl Acad. Sci. USA 120, e2204892120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wegner, G. I. et al. Averting wildlife-borne infectious disease epidemics requires a focus on socio-ecological drivers and a redesign of the global food system. eClinicalMedicine 47, 101386 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sikkema, R. S. et al. Risks of SARS-CoV-2 transmission between free-ranging animals and captive mink in the Netherlands. Transbound. Emerg. Dis. 69, 3339–3349 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Isabella, M. et al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. J. Virol. 88, 4375–4388 (2014).

    Article 

    Google Scholar 

  • Agüero, M. et al. Highly pathogenic avian influenza A (H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance 28, 2300001 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Domańska-Blicharz, K. et al. Cryptic SARS-CoV-2 lineage identified on two mink farms as a possible result of long-term undetected circulation in an unknown animal reservoir, Poland, November 2022 to January 2023. Eurosurveillance 28, 2300188 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Walsh, M. G., Mor, S. M., Maity, H. & Hossain, S. Forest loss shapes the landscape suitability of Kyasanur Forest disease in the biodiversity hotspots of the Western Ghats, India. Int. J. Epidemiol. 48, 1804–1814 (2019).

    PubMed 

    Google Scholar 

  • Green, J., Schmidt-Burbach, J. & Elwin, A. Taking stock of wildlife farming: a global perspective. Glob. Ecol. Conserv. 43, e02452 (2023).

    Google Scholar 

  • Biao, K. et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900 (2005).

    Article 

    Google Scholar 

  • Nelson, M. I. et al. Global migration of influenza A viruses in swine. Nat. Commun. 6, 1–11 (2015).

    Article 

    Google Scholar 

  • Brown, V. R. et al. Risks of introduction and economic consequences associated with African swine fever, classical swine fever and foot-and-mouth disease: a review of the literature. Transbound. Emerg. Dis. 68, 1910–1965 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Moyen, N. et al. Avian influenza transmission risk along live poultry trading networks in Bangladesh. Sci. Rep. 11, 19962 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lankau, E. W. et al. Prevention and control of rabies in an age of global travel: a review of travel- and trade-associated rabies events—US, 1986–2012. Zoonoses Public. Health 61, 305–316 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Worobey, M. et al. The Huanan market was the early epicenter of SARS-CoV-2 emergence. Science 377, 951–959 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aguirre, A. A., Catherina, R., Frye, H. & Shelley, L. Illicit wildlife trade, wet markets, and COVID-19: preventing future pandemics. World Med. Health Policy 12, 256–265 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, P. et al. Avian influenza A (H7N9) virus and mixed live poultry–animal markets in Guangdong province: a perfect storm in the making? Emerg. Microbes Infect. 4, 1–3 (2015).

    Article 
    CAS 

    Google Scholar 

  • Milbank, C. & Vira, B. Wildmeat consumption and zoonotic spillover: contextualising disease emergence and policy responses. Lancet Planet. Health 6, e439–e448 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, W., Hughes, J., Robertson, D. & Jiang, X. How one pandemic led to another: was African swine fever virus (ASFV) the disruption contributing to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence? Preprint at Preprints.org (2022).

  • Lytras, S., Xia, W., Hughes, J., Jiang, X. & Robertson, D. L. The animal origin of SARS-CoV-2. Science 373, 968–970 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017). This review describes and analyses the effects of urbanization on the evolution of microorganisms, plants and animals, and how this affects interactions with humans.

    Article 
    PubMed 

    Google Scholar 

  • Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evolution 22, 95–102 (2007).

    Article 

    Google Scholar 

  • Egan, S., Barbosa, A. D., Feng, Y., Xiao, L. & Ryan, U. Critters and contamination: zoonotic protozoans in urban rodents and water quality. Water Res. 251, 121165 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akhtardanesh, B. et al. Survey of common infectious diseases in urban foxes (Vulpes spp.) in southeastern Iran. J. Wildl. Dis. 60, 77–85 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Naderi, S. et al. Zooanthroponotic transmission of SARS-CoV-2 and host-specific viral mutations revealed by genome-wide phylogenetic analysis. eLife 12, e83685 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision (United Nations, 2018).

  • Seto, K. C., Sánchez-Rodríguez, R. & Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 35, 167–194 (2010).

    Article 

    Google Scholar 

  • Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003 (2009).

    Article 

    Google Scholar 

  • United Nations Human Settlements Programme. World Cities Report 2022: Envisaging the Future of Cities (UN Habitat, 2022).

  • Coltart, C. E. M., Lindsey, B., Ghinai, I., Johnson, A. M. & Heymann, D. L. The Ebola outbreak, 2013–2016: old lessons for new epidemics. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160297 (2017).

    Article 

    Google Scholar 

  • Dellicour, S. et al. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9, 2222 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization & United Nations Human Settlements Programme. Hidden Cities: Unmasking and Overcoming Health Inequities in Urban Settings (WHO & UN Habitat, 2010).

  • Levin, A. T. et al. Assessing the burden of COVID-19 in developing countries: systematic review, meta-analysis and public policy implications. BMJ Glob. Health 7, e008477 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wachtler, B. et al. Socioeconomic inequalities and COVID-19—a review of the current international literature. J. Health Monit. 5, 3–17 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parolin, Z. & Lee, E. K. The role of poverty and racial discrimination in exacerbating the health consequences of COVID-19. Lancet Reg. Health Am. 7, 100178 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Damme, P. et al. Hepatitis A virus infection. Nat. Rev. Dis. Primers 9, 51 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Boussaa, S., Pesson, B. & Boumezzough, A. Phlebotomine sandflies (Diptera: Psychodidae) of Marrakech city, Morocco. Ann. Tropical Med. Parasitol. 101, 715–724 (2007).

    Article 
    CAS 

    Google Scholar 

  • Kabaria, C. W., Gilbert, M., Noor, A. M., Snow, R. W. & Linard, C. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa. Malar. J. 16, 1–10 (2017).

    Article 

    Google Scholar 

  • Giles, J. R. et al. The duration of travel impacts the spatial dynamics of infectious diseases. Proc. Natl Acad. Sci. USA 117, 22572–22579 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, K. et al. Population movement, city closure in Wuhan, and geographical expansion of the COVID-19 infection in China in January 2020. Clin. Infect. Dis. 71, 2045–2051 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75.e11 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castelli, F. & Sulis, G. Migration and infectious diseases. Clin. Microbiol. Infect. 23, 283–289 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • World Health Organization. SARS outbreak contained worldwide. WHO (2003).

  • Bell, D. M. & World Health Organization Working Group on International and Community Transmission of SARS. Public health interventions and SARS spread, 2003. Emerg. Infect. Dis. 10, 1900–1906 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stegeman, A. et al. Avian influenza A virus (H7N7) epidemic in the Netherlands in 2003: course of the epidemic and effectiveness of control measures. J. Infect. Dis. 190, 2088–2095 (2004).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. Strengthening Health Emergency Prevention, Preparedness, Response and Resilience (HEPR & WHO, 2023).

  • Singer, B. J. et al. Development of prediction models to identify hotspots of schistosomiasis in endemic regions to guide mass drug administration. Proc. Natl Acad. Sci. USA 121, e2315463120 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasbergen, L. M. R. et al. Multi-antigen serology and a diagnostic algorithm for the detection of arbovirus infections as novel tools for arbovirus preparedness in southeast Europe (MERMAIDS-ARBO): a prospective observational study. Lancet Infect. Dis. 25, 678–689 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Sigfrid, L. et al. Prevalence, clinical management, and outcomes of adults hospitalised with endemic arbovirus illness in southeast Europe (MERMAIDS-ARBO): a prospective observational study. Lancet Infect. Dis. 25, 690–700 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt, T. L. et al. Incursion pathways of the Asian tiger mosquito (Aedes albopictus) into Australia contrast sharply with those of the yellow fever mosquito (Aedes aegypti). Pest. Manag. Sci. 76, 4202–4209 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oliveira, S., Rocha, J., Sousa, C. A. & Capinha, C. Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models. Sci. Rep. 11, 9916 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakase, T., Giovanetti, M., Obolski, U. & Lourenço, J. Global transmission suitability maps for dengue virus transmitted by Aedes aegypti from 1981 to 2019. Sci Data 10, 275 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dagostin, F. et al. Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe, 2017 to 2021. Euro. Surveill. 28, 2300121 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farooq, Z. et al. European projections of West Nile virus transmission under climate change scenarios. One Health 16, 100509 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romero-Alvarez, D., Escobar, L. E., Auguste, A. J., Del Valle, S. Y. & Manore, C. A. Transmission risk of Oropouche fever across the Americas. Infect. Dis. Poverty 12, 47 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kjær, L. J. et al. Potential drivers of human tick-borne encephalitis in the Örebro region of Sweden, 2010–2021. Sci. Rep. 13, 7685 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chemison, A., Ramstein, G., Jones, A., Morse, A. & Caminade, C. Ability of a dynamical climate sensitive disease model to reproduce historical Rift valley fever outbreaks over Africa. Sci. Rep. 14, 3904 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nabi, G. et al. Bats and birds as viral reservoirs: a physiological and ecological perspective. Sci. Total. Env. 754, 142372 (2021).

    Article 
    CAS 

    Google Scholar 

  • Guth, S. et al. Bats host the most virulent—but not the most dangerous—zoonotic viruses. Proc. Natl Acad. Sci. USA 119, e2113628119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020). This study proposes a host-neutral explanation for differences in the number of zoonotic pathogens among animal groups.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ribeiro, R. et al. Incorporating environmental heterogeneity and observation effort to predict host distribution and viral spillover from a bat reservoir. Proc. Biol. Sci. 290, 20231739 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total. Env. 767, 145413 (2021).

    Article 
    CAS 

    Google Scholar 

  • Forero-Muñoz, N. R. et al. The coevolutionary mosaic of bat betacoronavirus emergence risk. Virus Evol. 10, vead079 (2024). This study shows that predicted virus hot spots based on the combined presence and richness of bat species may not be correct when they are compared with coronavirus co-evolution patterns.

    Article 
    PubMed 

    Google Scholar 

  • Warmuth, V. M., Metzler, D. & Zamora-Gutierrez, V. Human disturbance increases coronavirus prevalence in bats. Sci. Adv. 9, eadd0688 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nyakarahuka, L. et al. Ecological niche modeling for filoviruses: a risk map for Ebola and marburg virus disease outbreaks in Uganda. PLoS Curr. (2017).

  • Muylaert, R. L. et al. Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots. Nat. Commun. 14, 6854 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez, C. A. et al. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nat. Commun. 13, 4380 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horigan, V. et al. Assessing the quality of data for drivers of disease emergence. Sci. Tech. Rev. 42, 90–102 (2023).

    Article 
    CAS 

    Google Scholar 

  • Si, Y., Xin, Q., Prins, H. H. T., de Boer, W. F. & Gong, P. Improving the quantification of waterfowl migration with remote sensing and bird tracking. Sci. Bull. 60, 1984–1993 (2015).

    Article 

    Google Scholar 

  • Johnson, E. et al. Applications and advances in acoustic monitoring for infectious disease epidemiology. Trends Parasitol. 39, 386–399 (2023). This study highlights the promise of integrating ecological methodologies in infectious disease research.

    Article 
    PubMed 

    Google Scholar 

  • González-Pérez, M. I. et al. Field evaluation of an automated mosquito surveillance system which classifies Aedes and Culex mosquitoes by genus and sex. Parasites Vectors 17, 97 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

    Google Scholar 

  • Park, H.-A., Jung, H., On, J., Park, S. K. & Kang, H. Digital epidemiology: use of digital data collected for non-epidemiological purposes in epidemiological studies. Healthc. Inform. Res. 24, 253–262 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dugas, A. F. et al. Influenza forecasting with Google Flu trends. PLoS ONE 8, e56176 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocklöv, J. et al. Using big data to monitor the introduction and spread of Chikungunya, Europe, 2017. Emerg. Infect. Dis. 25, 1041 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. et al. Mobile health technology combats COVID-19 in China. J. Infect. 82, 159–198 (2021).

    PubMed 

    Google Scholar 

  • Brownstein, J. S., Rader, B., Astley, C. M. & Tian, H. Advances in artificial intelligence for infectious-disease surveillance. N. Engl. J. Med. 388, 1597–1607 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 1–13 (2020).

    Article 

    Google Scholar 

  • Bai, R. et al. Exploring utility of genomic epidemiology to trace origins of highly pathogenic influenza A/H7N9 in Guangdong. Virus Evol. 6, veaa097 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atama, N. C. et al. Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: using Usutu virus as a model. One Health 15, 100456 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hotta, K. et al. Antibody survey on avian influenza viruses using egg yolks of ducks in Hanoi between 2010 and 2012. Vet. Microbiol. 166, 179–183 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Rooij, M. M. T. et al. Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms. Occup. Env. Med. 78, 893–899 (2021).

    Article 

    Google Scholar 

  • Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nieuwenhuijse, D. F. et al. Setting a baseline for global urban virome surveillance in sewage. Sci. Rep. 10, 13748 (2020). This study shows the potential of environmental samples that may benefit pandemic preparedness.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, J. et al. Capturing noroviruses circulating in the population: sewage surveillance in Guangdong, China (2013–2018). Water Res. 196, 116990 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tisza, M. et al. Wastewater sequencing reveals community and variant dynamics of the collective human virome. Nat. Commun. 14, 6878 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kutter, J. S. et al. Small quantities of respiratory syncytial virus RNA only in large droplets around infants hospitalized with acute respiratory infections. Antimicrob. Resist. Infect. Control. 10, 100 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grayson, S. A., Griffiths, P. S., Perez, M. K. & Piedimonte, G. Detection of airborne respiratory syncytial virus in a pediatric acute care clinic. Pediatr. Pulmonol. 52, 684–688 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gaide, N. et al. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese. Sci. Rep. 11, 5928 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheung, P. P. et al. Identifying the species-origin of faecal droppings used for avian influenza virus surveillance in wild-birds. J. Clin. Virol. 46, 90–93 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, S. E. et al. Emerging technologies in the study of the virome. Curr. Opin. Virol. 54, 101231 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwok, K. T. T., Nieuwenhuijse, D. F., Phan, M. V. T. & Koopmans, M. P. G. Virus metagenomics in farm animals: a systematic review. Viruses 12, 107 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). This work presents a key artificial intelligence tool that has transformed timely prediction of pathogen properties.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warren, C. J. & Sawyer, S. L. Identifying animal viruses in humans. Science 379, 982–983 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • One Health High-Level Expert Panel. Prevention of zoonotic spillover: from relying on response to reducing the risk at source. PLoS Pathog. 19, e1011504 (2023). In this work the OHHLEP advocates for primary prevention.

    Article 

    Google Scholar 

  • Fritz, S. et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2, 922–930 (2019).

    Article 

    Google Scholar 

  • Pocock, M. J. O., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmer, J. R. B. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 916 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohnstaedt, L. W., Ladner, J., Campbell, L. R., Busch, N. & Barrera, R. Determining mosquito distribution from egg data: the role of the citizen scientist. Am. Biol. Teach. 78, 317–322 (2016).

    Article 

    Google Scholar 

  • Murindahabi, M. M. et al. Citizen science for monitoring the spatial and temporal dynamics of malaria vectors in relation to environmental risk factors in Ruhuha, Rwanda. Malar. J. 20, 1–18 (2021).

    Article 

    Google Scholar 

  • Kampen, H. et al. Approaches to passive mosquito surveillance in the EU. Parasites Vectors 8, 1–13 (2015).

    Article 

    Google Scholar 

  • Larsen, L. Why citizen scientists are gathering DNA from hundreds of lakes-on the same day. Nature (2024).

  • Poen, M. J. et al. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Eurosurveillance 23, 17-00449 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Münger, E. et al. One Health approach uncovers emergence and dynamics of Usutu and West Nile viruses in the Netherlands. Nat. Commun. 16, 7883 (2025). This extensive study describes how collaboration between different expertise, as well as involvement of citizen science, can lead to important insights in zoonotic virus ecology.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organizaton. mHealth: New Horizons for Health Through Mobile Technologies (WHO, 2011).

  • Kaarj, K., Akarapipad, P. & Yoon, J.-Y. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci. Rep. 8, 1–11 (2018).

    Article 
    CAS 

    Google Scholar 

  • Geneviève, L. D. et al. Participatory disease surveillance systems: ethical framework. J. Med. Internet Res. 21, e12273 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koppeschaar, C. E. et al. Influenzanet: citizens among 10 countries collaborating to monitor influenza in Europe. JMIR Public. Health Surveill. 3, e7429 (2017).

    Article 

    Google Scholar 

  • Elliot, A. J. et al. Self-sampling for community respiratory illness: a new tool for national virological surveillance. Eurosurveillance 20, 21058 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Su, X. et al. A novel internet sampling for HIV surveillance: feasibility of self-sampling and preparation of DBS for delivery detection of HIV total nucleic acid and complementarity to sentinel surveillance. BMC Infect. Dis. 23, 509 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012). This key study proposes a framework of disease emergence.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro. Surveill. 25, 2000045 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wille, M., Geoghegan, J. L. & Holmes, E. C. How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. B 374, 20190017 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X.-A. et al. A zoonotic Henipavirus in febrile patients in China. N. Engl. J. Med. 387, 470–472 (2022). This study is an example of how a human risk population can serve as the sentinel for novel zoonotic viruses.

    Article 
    PubMed 

    Google Scholar 

  • Porta, M. S., Greenland, S., Hernán, M., dos Santos Silva, I. & Last, J. M. A Dictionary of Epidemiology (Oxford Univ. Press, 2014).

  • Hui, D. S. et al. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect. Dis. 18, e217–e227 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H., de Paulo, K. J. I. d. A., Gültzow, T., Zimmermann, H. M. L. & Jonas, K. J. Brief report: determinants of potential sexual activity reduction in the face of the mpox epidemic. Int. J. Behav. Med. 32, 308–324 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Wilkinson, A., Parker, M., Martineau, F. & Leach, M. Engaging ‘communities’: anthropological insights from the West African Ebola epidemic. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160305 (2017).

    Article 

    Google Scholar 

  • Tan, C. C. S. et al. Transmission of SARS-CoV-2 from humans to animals and potential host adaptation. Nat. Commun. 13, 2988 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koopmans, M. SARS-CoV-2 and the human–animal interface: outbreaks on mink farms. Lancet Infect. Dis. 21, 18–19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hallmaier-Wacker, L. K., Munster, V. J. & Knauf, S. Disease reservoirs: from conceptual frameworks to applicable criteria. Emerg. Microbes Infect. 6, 1–5 (2017).

    Article 

    Google Scholar 

  • Food and Agriculture Organization, World Organisation for Animal Health & World Health Orgaization. Joint statement on the prioritization of monitoring SARS-CoV-2 infection in wildlife and preventing the formation of animal reservoirs. WHO (2022).

  • Hoffmann, M. et al. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Rep. 35, 109017 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayman, D. T. S. et al. Developing One Health surveillance systems. One Health 17, 100617 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bordier, M., Uea-Anuwong, T., Binot, A., Hendrikx, P. & Goutard, F. L. Characteristics of One Health surveillance systems: a systematic literature review. Preventive Vet. Med. 181, 104560 (2020).

    Article 

    Google Scholar 

  • Vredenberg, I. et al. Assessing the use of different surveillance components to detect highly pathogenic avian influenza outbreaks in poultry in the Netherlands in low-and high-risk years. Transbound. Emerg. Dis. 2025, 7441785 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Errecaborde, K. M. et al. Factors that enable effective One Health collaborations — a scoping review of the literature. PLoS ONE 14, e0224660 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sikkema, R. & Koopmans, M. One Health training and research activities in Western Europe. Infect. Ecol. Epidemiol. 6, 33703 (2016).

    PubMed 

    Google Scholar 

  • World Health Organization. WHO Pandemic Agreement (WHO, 2025). This work presents the adoption of the WHO Pandemic Agreement, an important milestone towards coordinated, fair preparation and response to future pandemics.

  • Stephen, C. & Berezowski, J. Reflective practice is a prerequisite for One Health development. One Health Outlook 6, 13 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halpin, K., Graham, K. & Durr, P. A. Sero-monitoring of horses demonstrates the Equivac® HeV Hendra virus vaccine to be highly effective in inducing neutralising antibody titres. Vaccines 9, 731 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manyweathers, J. et al. Risk mitigation of emerging zoonoses: Hendra virus and non-vaccinating horse owners. Transbound. Emerg. Dis. 64, 1898–1911 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • International Monetary Fund. World Economic Outlook: Countering the Cost-of-living Crisis (IMF, 2022).

  • Fan, V. Y., Jamison, D. T. & Summers, L. H. Pandemic risk: how large are the expected losses? Bull. World Health Organ. 96, 129 (2018).

    Article 
    PubMed 

    Google Scholar 

  • World Bank. Putting Pandemics Behind Us: Investing in One Health to Reduce Risks of Emerging Infectious Diseases (World Bank, 2022).

  • Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020). This study attempts to quantify the costs and benefits of pandemic preparedness.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Butt, E. W. et al. Amazon deforestation causes strong regional warming. Proc. Natl Acad. Sci. USA 120, e2309123120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montanarella, L., Scholes, R. & Brainich, A. The Assessment Report on Land Degradation and Restoration: Summary for Policymakers (IPBES, 2018).

  • Pike, J., Bogich, T., Elwood, S., Finnoff, D. C. & Daszak, P. Economic optimization of a global strategy to address the pandemic threat. Proc. Natl Acad. Sci. USA 111, 18519–18523 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sirleaf, E. J. & Clark, H. Report of the Independent Panel for Pandemic Preparedness and Response: making COVID-19 the last pandemic. Lancet 398, 101–103 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sikkema, R. S. et al. Detection of West Nile virus in a common whitethroat (Curruca communis) and Culex mosquitoes in the Netherlands, 2020. Eurosurveillance 25, 2001704 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Saint Lary, C.dB. et al. Assessing West Nile virus (WNV) and Usutu virus (USUV) exposure in bird ringers in the Netherlands: a high-risk group for WNV and USUV infection? One Health 16, 100533 (2023).

    Article 

    Google Scholar 

  • Streng, K. et al. Sentinel chicken surveillance reveals previously undetected circulation of West Nile virus in the Netherlands. Emerg. Microbes Infect. 13, 2406278 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Streng, K. et al. Orthoflavivirus surveillance in the Netherlands: insights from a serosurvey in horses & dogs and a questionnaire among horse owners. Zoonoses Public. Health 71, 900–910 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Tao, X., Liu, S., Zhu, W. & Rayner, S. Rabies surveillance and control in China over the last twenty years. Biosaf. Health 3, 142–147 (2021).

    Article 

    Google Scholar 

  • Liu, H. et al. Rabies viruses in specific wild fur animals in northern China, 2017–2019. Transbound. Emerg. Dis. 67, 2307–2312 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oude Munnink, B. B. et al. The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nat. Med. 27, 1518–1524 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alm, E. et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European region, January to June 2020. Eurosurveillance 25, 2001410 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voeten, H. et al. Unravelling the modes of transmission of SARS-CoV-2 during a nursing home outbreak: looking beyond the church super-spread event. Clin. Infect. Dis. 73, S163–S169 (2020).

    Article 

    Google Scholar 

  • Lu, L. et al. Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. Nat. Commun. 12, 6802 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulder, M. et al. Reinfection of severe acute respiratory syndrome coronavirus 2 in an immunocompromised patient: a case report. Clin. Infect. Dis. 73, e2841–e2842 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, L. et al. West Nile virus spread in Europe: phylogeographic pattern analysis and key drivers. PLoS Pathog. 20, e1011880 (2024). This work presents an extensive multi-institute phylogenetic analysis of WNV in Europe, identifying possible drivers for spread.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attwood, S. W., Hill, S. C., Aanensen, D. M., Connor, T. R. & Pybus, O. G. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat. Rev. Genet. 23, 547–562 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaughan, T. G. et al. Estimating epidemic incidence and prevalence from genomic data. Mol. Biol. Evol. 36, 1804–1816 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roosenhoff, R. et al. Influenza A/H3N2 virus infection in immunocompromised ferrets and emergence of antiviral resistance. PLoS ONE 13, e0200849 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, R. et al. Antigenic variation of avian influenza A (H5N6) viruses, Guangdong province, China, 2014–2018. Emerg. Infect. Dis. 25, 1932 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luca, B. et al. Highly pathogenic avian influenza H5N1 virus infections in wild red foxes (Vulpes vulpes) show neurotropism and adaptive virus mutations. Microbiol. Spectr. 11, e0286722 (2023).

    Article 

    Google Scholar 

  • Simmonds, P. & Aiewsakun, P. Virus classification—where do you draw the line? Arch. Virol. 163, 2037–2046 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat. Commun. 14, 4079 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geoghegan, J. L. & Holmes, E. C. Predicting virus emergence amid evolutionary noise. Open. Biol. 7, 170189 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suttie, A. et al. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes. 55, 739–768 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Potocnakova, L., Bhide, M. & Pulzova, L. B. An introduction to B-cell epitope mapping and in silico epitope prediction. J. Immunol. Res. 2016, 6760830 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joana, D. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).

    Article 

    Google Scholar 

  • Borkenhagen, L. K., Allen, M. W. & Runstadler, J. A. Influenza virus genotype to phenotype predictions through machine learning: a systematic review: computational prediction of influenza phenotype. Emerg. Microbes Infect. 10, 1896–1907 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, L. et al. Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China. Transbound. Emerg. Dis. 66, 687–695 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edwards, C. E. et al. Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc. Natl Acad. Sci. USA 117, 26915–26925 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Human–animal interactions and bat coronavirus spillover potential among rural residents in southern China. Biosaf. Health 1, 84–90 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schriml, L. M. et al. COVID-19 pandemic reveals the peril of ignoring metadata standards. Sci. Data 7, 188 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Z. et al. Global landscape of SARS-CoV-2 genomic surveillance and data sharing. Nat. Genet. 54, 499–507 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, K. et al. A morbillivirus that caused fatal disease in horses and humans. Science 268, 94–97 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Plowright, R. K. et al. Ecological dynamics of emerging bat virus spillover. Proc. R. Soc. B: Biol. Sci. 282, 20142124 (2015).

    Article 

    Google Scholar 

  • Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023). This work presents an extensive 25-year study of bat virus spillover in Australia, providing a knowledge base for the development of interventions for primary prevention of spillover.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Becker, D. J., Eby, P., Madden, W., Peel, A. J. & Plowright, R. K. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecol. Lett. 26, 23–36 (2023).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. SARS-CoV-2 in Animals Used for Fur Farming: GLEWS+ Risk Assessment (FAO, WOAH & WHO, 2021).

  • Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2020). This work is the first report of large-scale spillover and spill-back of SARS-CoV-2 between humans and animals.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindh, E. et al. Highly pathogenic avian influenza A (H5N1) virus infection on multiple fur farms in the South and Central Ostrobothnia regions of Finland, July 2023. Eurosurveillance 28, 2300400 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. Farmed fur animals harbour viruses with zoonotic spillover potential. Nature 634, 228–233 (2024). This study shows that farmed fur animals can be a reservoir for novel zoonotic viruses, in addition to known risks of SARS-CoV-2 and avian influenza virus infections and adaptation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • European Food Safety Authority et al. Drivers for a pandemic due to avian influenza and options for One Health mitigation measures. EFSA J. 22, e8735 (2024).

    Google Scholar 

  • European Food Safety Authoity. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J. 21, e07822 (2023).

    Google Scholar 

  • Halstead, S. B. Three dengue vaccines—what now. N. Engl. J. Med. 390, 464–465 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Weber, W. C. et al. The approved live-attenuated Chikungunya virus vaccine (IXCHIQ®) elicits cross-neutralizing antibody breadth extending to multiple arthritogenic alphaviruses similar to the antibody breadth following natural infection. Vaccines 12, 893 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization. Global Vector Control Response 2017–2030 (WHO & TDR, 2017).

  • Hickmann, M. Plant-covered residential towers in Chengdu attract mosquitos, repel tenants. The Architect’s Newspaper (2020).

  • Walshe, D. P., Garner, P., Adeel, A. A., Pyke, G. H. & Burkot, T. R. Larvivorous fish for preventing malaria transmission. Cochrane Database Syst. Rev. 12, CD008090 (2017).

    PubMed 

    Google Scholar 

  • Willott, E. Restoring nature, without mosquitoes? Restor. Ecol. 12, 147–153 (2004).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *