Mental health symptoms in Chinese children with sleep disorders and association with parental emotions

0
Mental health symptoms in Chinese children with sleep disorders and association with parental emotions
  • Pavlova, M. K. & Latreille, V. Sleep disorders. Am. J. Med. 132, 292–299. (2019).

    Article 

    Google Scholar 

  • Oster, H. et al. The functional and clinical significance of the 24-Hour rhythm of Circulating glucocorticoids. Endocr. Rev. 38, 3–45. (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, J. et al. Association of sleep duration and risk of mental disorder: A systematic review and meta-analysis. Sleep. Breath. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ju, Y. S. et al. Sleep quality and preclinical alzheimer disease. JAMA Neurol. 70, 587–593. (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, M., Guo, L., Huo, J. & Zhou, G. Prevalence of sleep disturbances in Chinese adolescents: A systematic review and Meta-Analysis. PLoS One. 16, e247333. (2021).

    Article 
    CAS 

    Google Scholar 

  • Meltzer, L. J., Johnson, C., Crosette, J., Ramos, M. & Mindell, J. A. Prevalence of diagnosed sleep disorders in pediatric primary care practices. Pediatrics 125, e1410–e1418. (2010).

    Article 
    PubMed 

    Google Scholar 

  • Deep Brain Stimulation Of Symptom-Specific networks in parkinson’s disease. Nat. Commun. 15, 4662. (2024).

  • GBD, M. D. C. Global, Regional, and National burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet Psychiatry. 9, 137–150. (2022).

  • Cai, H. et al. Prevalence of sleep disturbances in children and adolescents during COVID-19 pandemic: A Meta-Analysis and systematic review of epidemiological surveys. Transl. Psychiat. 14 (2024).

  • UNICEF. An Open Letter to the World’s Children. (2022).

  • Sawyer, S. M., Azzopardi, P. S., Wickremarathne, D. & Patton, G. C. The age of adolescence. Lancet Child Aadolesc. Health 2, 223–228. (2018).

  • Zhou, T., Li, R., Shi, Y., Tian, G. & Yan, Y. The associations between sleep duration, cognitive function, and depressive symptoms: an analysis of Chinese adolescents from China family panel studies. J. Affect. Disord. 319, 252–259. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Paruthi, S. et al. Recommended amount of sleep for pediatric populations: A consensus statement of the American academy of sleep medicine. J. Clin. Sleep. Med. 12, 785–786. (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fava, G. A. & Sonino, N. The biopsychosocial model Thirty years later. Psychother. Psychosom. 77, 1–2. (2007).

    Article 
    PubMed 

    Google Scholar 

  • Espie, C. A. Insomnia, conceptual issues in the development, persistence, and treatment of sleep disorder in adults. Annu. Rev. Psychol. 53, 215–243. (2002).

    Article 
    PubMed 

    Google Scholar 

  • Cheng, W., Rolls, E. T., Ruan, H. & Feng, J. Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiat. 75, 1052–1061. (2018).

    Article 

    Google Scholar 

  • Gutierrez-Galve, L. et al. Association of maternal and paternal depression in the postnatal period with offspring depression at age 18 years. JAMA Psychiat. 76, 290–296 (2019).

    Google Scholar 

  • Karevold, E., Roysamb, E., Ystrom, E. & Mathiesen, K. S. Predictors and pathways from infancy to symptoms of anxiety and depression in early adolescence. Dev. Psychol. 45, (2009).

  • Borsboom, D. A. Network theory of mental disorders. World Psychiatry. 16, 5–13 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McLeod, J. D., Uemura, R. & Rohrman, S. Adolescent mental health, behavior problems, and academic achievement. J. Health Soc. Behav. 53, 482–497. (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fried, E. I. & Nesse, R. M. Depression Sum-Scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 13, 72. (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borsboom, D. & Cramer, A. O. Network analysis: an integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–121 (2013).

    PubMed 

    Google Scholar 

  • Hofmann, S. G., Curtiss, J. & McNally, R. J. A complex network perspective on clinical science. Perspect. Psychol. Sci. 11, 597–605. (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Borkulo, C. et al. Comparing network structures on three aspects: A permutation test. Psychol. Methods. 26 (2023).

  • Zhang, P. et al. A network analysis of anxiety and depression symptoms in Chinese disabled elderly. J. Affect. Disord. 333, 535–542 (2023).

    PubMed 

    Google Scholar 

  • Burger, J. et al. Reporting standards for psychological network analyses in Cross-Sectional data. Psychol. Methods. (2022).

    Article 
    PubMed 

    Google Scholar 

  • Harshaw, C. Interoceptive dysfunction: toward an integrated framework for Understanding somatic and affective disturbance in depression. Psychol. Bull. 141, 311 (2015).

    PubMed 

    Google Scholar 

  • Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55. (1983).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Stuart, E. A., King, G., Imai, K. & Ho, D. MatchIt: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. (2011).

    Article 

    Google Scholar 

  • The, E. C. & United, N. H. S. P. OECD Regional Development Studies Applying the Degree of Urbanisation a Methodological Manual to Define Cities, Towns and Rural Areas for International Comparisons: A Methodological Manual to Define Cities, Towns and Rural Areas for International Comparisons (OECD Publishing, 2021).

  • Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiat Res. 28, 193–213. (1989).

    Article 
    CAS 

    Google Scholar 

  • Ho, K. Y. et al. Psychometric properties of the Chinese version of the Pittsburgh sleep quality index (PSQI) among Hong Kong Chinese childhood cancer survivors. Health Qual. Life Out. 19, 1–11. (2021).

    Article 

    Google Scholar 

  • Mollayeva, T. et al. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and Non-Clinical samples: A systematic review and Meta-Analysis. Sleep. Med. Rev. 25, 52–73. (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lovibond, P. F. & Lovibond, S. H. The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behav. Res. Ther. 33, 335–343. (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, K. et al. Cross-Cultural validation of the depression anxiety stress Scale–21 in China. Psychol. Assess. 28, e88. (2016).

    Article 
    PubMed 

    Google Scholar 

  • Pavot, W. & Diener, E. The satisfaction with life scale and the emerging construct of life satisfaction. J. Posit. Psychol. 3, 137–152 (2008).

    Google Scholar 

  • Bai, X., Wu, C., Zheng, R. & Ren, X. The psychometric evaluation of the satisfaction with life scale using a nationally representative sample of China. J. Happiness Stud. 12, 183–197 (2011).

    Google Scholar 

  • Tully, P. J., Zajac, I. T. & Venning, A. J. The structure of anxiety and depression in a normative sample of younger and older Australian adolescents. J. Abnorm. Child. Psychol. 37, 717–726. (2009).

    Article 
    PubMed 

    Google Scholar 

  • Mellor, D. et al. Factorial invariance of the DASS-21 among adolescents in four countries. Eur. J. Psychol. Assess. (2015).

    Article 

    Google Scholar 

  • Evans, L., Haeberlein, K., Chang, A. & Handal, P. Convergent validity and preliminary Cut-Off scores for the anxiety and depression subscales of the DASS-21 in US adolescents. Child. Psychiatry Hum. Dev. 52, 579–585. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Epskamp, S., Borsboom, D. & Fried, E. I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods. 50, 195–212. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Haslbeck, J. & Waldorp, L. J. Mgm: Structure estimation for time-varying mixed graphical models in high-dimensional data. J. Stat. Softw. 93 (2020).

  • Constantin, M. A., Schuurman, N. K. & Vermunt, J. K. A general Monte Carlo method for sample size analysis in the context of network models. Psychol. Methods. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Jones, P. J. Networktools: Tools for identifying important nodes in networks. R Package Version. 1, 10–1155. (2018).

    Article 

    Google Scholar 

  • Panos, A. & Mavridis, D. TableOne: An online web application and R package for summarising and visualising data. BMJ Ment Health. 23, 127–130. (2020).

  • Epskamp, S. et al. Network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18. (2012).

    Article 

    Google Scholar 

  • Chen, J. & Chen, Z. Extended bayesian information criteria for model selection with large model spaces. Biometrika 95, 759–771. (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Jones, P. J., Ma, R. & McNally, R. J. Bridge centrality: A network approach to Understanding comorbidity. Multivar. Behav. Res. 56, 353–367 (2021).

    Google Scholar 

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 2013).

  • Epskamp, S. & Fried, E. I. A tutorial on regularized partial correlation networks. Psychol. Methods. 23, 617. (2018).

    Article 
    PubMed 

    Google Scholar 

  • Epskamp, S. Bootnet: bootstrap methods for various network Estimation routines. Cran R-Project Org. (2017).

    Article 

    Google Scholar 

  • Huang, X., Zhang, Y. & Yu, G. A Meta-Analysis of the detection rate of mental health problems among primary school students in Mainland China from 2010 to 2020. Adv. Psychol. Sci. 30, 953–964. (2022).

    Article 

    Google Scholar 

  • Dai, L., He, L. & Q, W. & Sleep quality of primary and secondary school students in Shenzhen City. Chin. J. School Health. 3, 367–369 (2024).

    Google Scholar 

  • Yasuma, F. & Hayano, J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm?? Chest 125, 683–690. (2004).

    Article 
    PubMed 

    Google Scholar 

  • Freeman, D. et al. Efficacy of cognitive behavioural therapy for sleep improvement in patients with persistent delusions and hallucinations (BEST): A prospective, Assessor-Blind, randomised controlled pilot trial. Lancet Psychiatry. 2, 975–983. (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • American Psychiatric Association, D. & American Psychiatric Association. D. S. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 Vol. 5 (American Psychiatric Association, (2013).

  • Hayes, A. M., Yasinski, C., Ben Barnes, J. & Bockting, C. L. H. Network destabilization and transition in depression: new methods for studying the dynamics of therapeutic change. Clin. Psychol. Rev. 41, 27–39. (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, M. J., Gregory, A. M., Freeman, D. & Ronald, A. Do sleep disturbances and Psychotic-Like experiences in adolescence share genetic and environmental influences?? J. Abnorm. Psychol. 124, 674. (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, H., Li, D., Yang, F. & Zhang, Z. Impact of corrupt admission on the mental health of Chinese adolescents. Sci. Rep. -UK. 14, 16263. (2024).

    Article 
    CAS 

    Google Scholar 

  • Caldwell, D. M. et al. School-Based interventions to prevent anxiety and depression in children and young people: A systematic review and network Meta-Analysis. Lancet Psychiatry. 6, 1011–1020. (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freud, S. & Chase, H. W. The Origin and Development of Psychoanalysis (Modern Library, 1925).

  • Resch, F. & Parzer, P. Adolescent Risk Behavior and Self-Regulation: A Cybernetic Perspective (Springer, 2021).

  • Schultz, W. A dopamine mechanism for reward maximization. Proc. Natl. Acad. Sci. USA 121, e1978309175. (2024).

  • Giri, B. et al. Sleep loss diminishes hippocampal reactivation and replay. Nature 1-8 (2024).

  • Panayiotou, M., Black, L., Carmichael-Murphy, P., Qualter, P. & Humphrey, N. Time spent on social media among the least influential factors in adolescent mental health: preliminary results from a panel network analysis. Nat. Mental Health. 1, 316–326. (2023).

    Article 

    Google Scholar 

  • Bai, W. et al. Network analysis of depression, anxiety, insomnia and quality of life among Macau residents during the COVID-19 pandemic. J. Affect. Disord. 311, 181–188. (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tremblay, M. et al. Canadian 24-Hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 41 S311–S327 (2016).

  • Bull, F. C. et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. Brit J. Sport Med. 54, 1451–1462. (2020).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *