Leveraging the water-environment-health nexus to characterize sustainable water purification solutions

0
Leveraging the water-environment-health nexus to characterize sustainable water purification solutions
  • Johnson, A. C., Jin, X. W., Nakada, N. & Sumpter, J. P. Learning from the past and considering the future of chemicals in the environment. Science 367, 384–387 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, Z. Y. et al. We need a global science-policy body on chemicals and waste. Science 371, 774 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 367, 388 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Deziel, N. C. & Villanueva, C. M. Assessing exposure and health consequences of chemicals in drinking water in the 21st Century. J. Expo. Sci. Environ. Epidemiol. 34, 1–2 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. Z., Gao, Y. R., Liu, Q. S., Zhou, Q. F. & Jiang, G. B. Chemical contaminants in blood and their implications in chronic diseases. J. Hazard. Mater. 466, 133511 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Fairbairn, D. J. et al. Contaminants of emerging concern: mass balance and comparison of wastewater effluent and upstream sources in a mixed-use watershed. Environ. Sci. Technol. 50, 36–45 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jia, D. T. et al. Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos. Environ. Sci. Ecotechnol. 10, 100162 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villanueva, C. M. et al. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ. Health Perspect. 122, 213–221 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • van der Hoek, J. P., Bertelkamp, C., Verliefde, A. R. D. & Singhal, N. Drinking water treatment technologies in Europe: state of the art – challenges – research needs. J. Water Supply Res Technol. Aqua 63, 124–130 (2014).

    Article 

    Google Scholar 

  • Teodosiu, C., Gilca, A. F., Barjoveanu, G. & Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 197, 1210–1221 (2018).

    Article 
    CAS 

    Google Scholar 

  • Maziotis, A. & Molinos-Senante, M. Understanding energy performance in drinking water treatment plants using the efficiency analysis tree approach. npj Clean Water 7, 13 (2024).

    Article 

    Google Scholar 

  • Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mitch, W. A. Tap water and bladder cancer in China. Nat. Sustain. 5, 643–644 (2022).

    Article 
    MATH 

    Google Scholar 

  • Li, X. F. & Mitch, W. A. Drinking Water Disinfection Byproducts (DBPs) and human health effects: multidisciplinary challenges and opportunities. Environ. Sci. Technol. 52, 1681–1689 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lau, S. S. et al. Toxicological assessment of potable reuse and conventional drinking waters. Nat. Sustain. 6, 39–46 (2023).

    Article 
    MATH 

    Google Scholar 

  • Nika, C. E. et al. Nature-based solutions as enablers of circularity in water systems: a review on assessment methodologies, tools and indicators. Water. Res. 183, 115988 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ray, C., Melin, G. & Linsky, R. B. Riverbank Filtration: Improving Source-Water Quality 43 (Springer Netherlands, 2003).

  • Chung, M. G., Frank, K. A., Pokhrel, Y., Dietz, T. & Liu, J. G. Natural infrastructure in sustaining global urban freshwater ecosystem services. Nat. Sustain. 4, 1068 (2021). +.

    Article 

    Google Scholar 

  • Kondor, A. C. et al. Efficiency of the bank filtration for removing organic priority substances and contaminants of emerging concern: a critical review. Environ. Pollut. 340, 122795 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kovacevic, S., Radisic, M., Lausevic, M. & Dimkic, M. Occurrence and behavior of selected pharmaceuticals during riverbank filtration in The Republic of Serbia. Environ. Sci. Pollut. Res. 24, 2075–2088 (2017).

    Article 
    CAS 

    Google Scholar 

  • Albergamo, V. et al. Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment. Water. Res. 148, 535–545 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhai, Y. J., Liu, G. & van der Meer, W. G. J. One-step reverse osmosis based on riverbank filtration for future drinking water purification. Engineering 9, 27–34 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Osorio, S. C., Biesheuvel, P. M., Spruijt, E., Dykstra, J. E. & van der Wal, A. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. Water. Res. 225, 119130 (2022).

    Article 

    Google Scholar 

  • Wang, X. et al. Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nat. Commun. 10, 2627 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zijp, M. C. & van der Laan, H. Life Cycle Assessment of Two Drinking Water Production Schemes (National Institute for Public Health and the Environment, 2015).

  • Wold Health Organization. Guidelines for Drinking-Water Quality, 4th Ed. (World Health Organization, 2011).

  • Shemer, H. et al. Remineralization of desalinated water by limestone dissolution with carbon dioxide. Desalin. Water Treat. 51, 877–881 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Nielsen, C. J. et al. Atmospheric Degradation of Amines (ADA). Summary Report: Gas phase photo-oxidation of 2-aminoethanol (MEA) CLIMIT Project No. 193438 (Norwegian Institute for Air Research, 2010).

  • de Paula, E. C. & Amaral, M. C. S. Extending the life-cycle of reverse osmosis membranes: a review. Waste Manag. Res. 35, 456–470 (2017).

    Article 
    MATH 

    Google Scholar 

  • Qiu, G. H., Wang, S. H., Song, D. W., Liu, S. H. & Wang, H. T. Review of performance improvement of energy recovery turbines in the reverse osmosis desalination. Desalin. Water Treat. 119, 70–73 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Pan, Y. R. et al. Characterization of implementation limits and identification of optimization strategies for sustainable water resource recovery through life cycle impact analysis. Environ. Int. 133, 105266 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Choi, H., Shin, J. & Woo, J. Effect of electricity generation mix on battery electric vehicle adoption and it its environmental impact. Energy Policy 121, 13–24 (2018).

    Article 
    MATH 

    Google Scholar 

  • Hertwich, E. G. et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl Acad. Sci. USA 112, 6277–6282 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Chang, S. Y., Zhuo, J. K., Meng, S., Qin, S. Y. & Yao, Q. Clean coal technologies in China: current status and future perspectives. Engineering 2, 447–459 (2016).

    Article 

    Google Scholar 

  • Larsen, T. A., Hoffmann, S., Luthi, C., Truffer, B. & Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 352, 928–933 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Nansai, K. et al. Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nat. Commun. 12, 6286 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kaufman, J. U. & Curl, C. L. Environmental Health Sciences in a translational research framework: more than benches and bedsides. Environ. Health Perspect. 127, 045001 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schullehner, J., Cserbik, D., Gago-Ferrero, P., Lundqvist, J. & Nuckols, J. R. Integrating different tools and technologies to advance drinking water quality exposure assessments. J. Expo. Sci. Environ. Epidemiol. 34, 108–114 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferraro, P. J. & Prasse, C. Reimagining safe drinking water on the basis of twenty-first-century science. Nat. Sustain. 4, 1032–1037 (2021).

    Article 
    MATH 

    Google Scholar 

  • Isaacs, K. K. et al. Screening for drinking water contaminants of concern using an automated exposure-focused workflow. J. Expo. Sci. Environ. Epidemiol. 34, 136–147 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Xiao, F. et al. Cross-national challenges and strategies for PFAS regulatory compliance in water infrastructure. Nat. Water 1, 1004–1015 (2023).

    Article 
    MATH 

    Google Scholar 

  • Rahman, M. F., Peldszus, S. & Anderson, W. B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 50, 318–340 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, S. F. et al. Engineering antifouling reverse osmosis membranes: a review. Desalination 499, 114857 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bellona, C., Drewes, J. E., Xu, P. & Amy, G. Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review. Water. Res. 38, 2795–2809 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salamon, E. & Goda, Z. Coupling riverbank filtration with reverse osmosis may favor short distances between wells and riverbanks at RBF sites on the River Danube in Hungary. Water 11, 113 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Hoang, N. A. T., Covatti, G. & Grischek, T. Methodology for evaluation of potential sites for large-scale riverbank filtration. Hydrogeol. J. 30, 1701–1716 (2022).

    Article 
    ADS 

    Google Scholar 

  • Wang, H. S. et al. Replacing traditional pretreatment in one-step UF with natural short-distance riverbank filtration: Continuous contaminants removal and TMP increase relief. Water. Res. 249, 120948 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ahmed, A. K. A. & Marhaba, T. F. Review on river bank filtration as an in situ water treatment process. Clean Technol. Environ. Policy 19, 349–359 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Imbulana, S., Oguma, K. & Takizawa, S. Evaluation of groundwater quality and reverse osmosis water treatment plants in the endemic areas of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Sci. Total Environ. 745, 140716 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cherukumilli, K., Ray, I. & Pickering, A. J. Evaluating the hidden costs of drinking water treatment technologies. Nat. Water 1, 319–327 (2023).

    Article 
    MATH 

    Google Scholar 

  • Falinski, M. M. et al. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotechnol. 13, 708–714 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jenkins, A. et al. Watersheds in planetary health research and action Comment. Lancet Planet. Health. 2, E510–E511 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, J. G. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Ross, S. & Evans, D. Excluding site-specific data from the LCA inventory: How this affects Life Cycle impact Assessment. Int. J. Life Cycle Assess. 7, 141–150 (2002).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Okampo, E. J. & Nwulu, N. Optimisation of renewable energy powered reverse osmosis desalination systems: a state-of-the-art review. Renew. Sustain. Energy Rev. 140, 110712 (2021).

    Article 
    MATH 

    Google Scholar 

  • Santana, M. V. E., Zhang, Q. & Mihelcic, J. R. Influence of water quality on the embodied energy of drinking water treatment. Environ. Sci. Technol. 48, 3084–3091 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Alardhi, S. M. et al. Separation techniques in different configurations of hybrid systems via synergetic adsorption and membrane processes for water treatment: a review. J. Ind. Eng. Chem. 130, 91–104 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhi, W., Appling, A. P., Golden, H. E., Podgorski, J. & Li, L. Deep learning for water quality. Nat. Water 2, 228–241 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kumari, M. & Kumar, A. Identification of component-based approach for prediction of joint chemical mixture toxicity risk assessment with respect to human health: a critical review. Food Chem. Toxicol. 143, 111458 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wee, S. Y. et al. Pharmaceuticals, hormones, plasticizers, and pesticides in drinking water. J. Hazard. Mater. 424, 127327 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Puri, M., Gandhi, K. & Kumar, M. S. Emerging environmental contaminants: a global perspective on policies and regulations. J. Environ. Manag. 332, 117344 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Levin, R. et al. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. J. Expo. Sci. Environ. Epidemiol. 34, 3–22 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, B. & Yu, G. Emerging contaminant control: from science to action. Front. Environ. Sci. Eng. 16, 81 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Colzani, L., Forni, C., Clerici, L., Barreca, S. & Dellavedova, P. Determination of pollutants, antibiotics, and drugs in surface water in Italy as required by the third EU Water Framework Directive Watch List: method development, validation, and assessment. Environ. Sci. Pollut. Res. 13, 24791–14803 (2024).

    Google Scholar 

  • Mueller, N. C. & Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Westh, T. B. et al. The USEtox story: a survey of model developer visions and user requirements. Int. J. Life Cycle Assess. 20, 299–310 (2015).

    Article 
    MATH 

    Google Scholar 

  • Rahman, S. M., Eckelman, M. J., Onnis-Hayden, A. & Gu, A. Z. Comparative life cycle assessment of advanced wastewater treatment processes for removal of chemicals of emerging concern. Environ. Sci. Technol. 52, 11346–11358 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hao, X. D. et al. Environmental impacts of resource recovery from wastewater treatment plants. Water Res. 160, 268–277 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Loubet, P., Roux, P., Loiseau, E. & Bellon-Maurel, V. Life cycle assessments of urban water systems: A comparative analysis of selected peer-reviewed literature. Water Res. 67, 187–202 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *