Untargeted metabolomics reveal signatures of a healthy lifestyle

0
Untargeted metabolomics reveal signatures of a healthy lifestyle
  • Wishart, D. S. et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 50, D622–D631 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Babu, M. & Snyder, M. Multi-omics profiling for health. Mol. Cell Proteomics 22, 100561 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. BMJ 368, l6669 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 138, 345–355 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nyberg, S. T. et al. Association of healthy lifestyle with years lived without major chronic diseases. JAMA Intern. Med. 180, 760–768 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Carrard, J. et al. The metabolic signature of cardiorespiratory fitness: A systematic review. Sports Med. 52, 527–546 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Castro, A. et al. Understanding the relationship between intrinsic cardiorespiratory fitness and serum and skeletal muscle metabolomics profile. J. Proteome Res. 20, 2397–2409 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112-1130.e16 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kistner, S. et al. Sex-specific relationship between the cardiorespiratory fitness and plasma metabolite patterns in healthy humans-results of the KarMeN study. Metabolites 11, 463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiss, A. et al. Sustained endurance training leads to metabolomic adaptation. Metabolites 12, 658 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noerman, S. & Landberg, R. Blood metabolite profiles linking dietary patterns with health-toward precision nutrition. J. Intern. Med. 293, 408–432 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Lépine, G. et al. A scoping review: Metabolomics signatures associated with animal and plant protein intake and their potential relation with cardiometabolic risk. Adv. Nutr. 12, 2112–2131 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rafiq, T. et al. Nutritional metabolomics and the classification of dietary biomarker candidates: A critical review. Adv. Nutr. 12, 2333–2357 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andraos, S. et al. Characterizing patterns of dietary exposure using metabolomic profiles of human biospecimens: A systematic review. Nutr. Rev. 80, 699–708 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kim, H. & Rebholz, C. M. Metabolomic biomarkers of healthy dietary patterns and cardiovascular outcomes. Curr. Atheroscler. Rep. 23, 26 (2021).

    Article 
    PubMed 

    Google Scholar 

  • LeVatte, M., Keshteli, A. H., Zarei, P. & Wishart, D. S. Applications of metabolomics to precision nutrition. Lifestyle Genom. 15, 1–9 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Giesbertz, P. et al. Age-related metabolite profiles and their relation to clinical outcomes in young adults, middle-aged individuals, and older people. FASEB J. 37, e22968 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cirulli, E. T. et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 29, 488-500.e2 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Auguet, T. et al. LC/MS-based untargeted metabolomics analysis in women with morbid obesity and associated type 2 diabetes mellitus. Int. J. Mol. Sci. 24, 7761 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, J. E. et al. Metabolomic profiles of body mass index in the Framingham heart study reveal distinct cardiometabolic phenotypes. PLoS ONE 11, e0148361 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, K. et al. Multiomic signatures of body mass index identify heterogeneous health phenotypes and responses to a lifestyle intervention. Nat. Med. 29, 996–1008 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carayol, M. et al. Blood metabolic signatures of body mass index: A targeted metabolomics study in the EPIC cohort. J. Proteome Res. 16, 3137–3146 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellot, P. E. N. R. et al. are phosphatidylcholine and lysophosphatidylcholine body levels potentially reliable biomarkers in obesity? A review of human studies. Mol. Nutr. Food Res. 67, e2200568 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Navarro, S. L. et al. Demographic, health and lifestyle factors associated with the metabolome in older women. Metabolites 13, 514 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Q. et al. Healthy lifestyle, plasma metabolites, and risk of cardiovascular disease among individuals with diabetes. Atherosclerosis 367, 48–55 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaspy, M. S. et al. Metabolomic profile of combined healthy lifestyle behaviours in humans: A systematic review. Proteomics 22, e2100388 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Palau-Rodriguez, M. et al. Effects of a long-term lifestyle intervention on metabolically healthy women with obesity: Metabolite profiles according to weight loss response. Clin. Nutr. 39, 215–224 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dunn, W. B. et al. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 40, 387–426 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wishart, D. S. Metabolomics for investigating physiological and pathophysiological processes. Physiol. Rev. 99, 1819–1875 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nieman, D. C. et al. Healthy lifestyle linked to innate immunity and lipoprotein metabolism: A cross-sectional comparison using untargeted proteomics. Sci. Rep. 13, 16728 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y.-Y. et al. Untargeted metabolomics: Biochemical perturbations in Golestan cohort study opium users inform intervention strategies. Front. Nutr. 7, 584585 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghanbari, R. et al. Metabolomics reveals biomarkers of opioid use disorder. Transl. Psychiatry 11, 103 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, D. H. et al. Baseline serum biomarkers predict response to a weight loss intervention in older adults with obesity: A pilot study. Metabolites 13, 853 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, J. & Xia, Y. Pretreating and normalizing metabolomics data for statistical analysis. Genes Dis. 11(3), 100979. (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, E. C., Pasikanti, K. K. & Nicholson, J. K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc. 6(10), 1483–1499. (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Välikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief Bioinform. 19, 1–11 (2018).

    PubMed 

    Google Scholar 

  • Smirnov, A. et al. ADAP-KDB: A spectral knowledgebase for tracking and prioritizing unknown GC-MS spectra in the NIH’s metabolomics data repository. Anal. Chem. 93, 12213–12220 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bylesjö, M. et al. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 20, 341–351 (2006).

    Article 

    Google Scholar 

  • Eriksson, L. et al. Multi- and Megavariate Data Analysis Basic Principles and Applications (Umetrics Academy, 2013).

    Google Scholar 

  • Broadhurst, D. et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14, 72 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bender, R. & Lange, S. Adjusting for multiple testing—When and how?. J. Clin. Epidemiol. 54, 343–349 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xi, D. & Tamhane, A. C. A general multistage procedure for k-out-of-n gatekeeping. Stat. Med. 33, 1321–1335 (2014).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tay, J. K., Narasimhan, B. & Hastie, T. Elastic net regularization paths for all generalized linear models. J. Stat. Softw. 106, 1 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S. et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68, e86 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49, W388–W396 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pang, Z. et al. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qi, L. & Chen, Y. Circulating bile acids as biomarkers for disease diagnosis and prevention. J. Clin. Endocrinol. Metab. 108, 251–270 (2023).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Haeusler, R. A. et al. Increased bile acid synthesis and impaired bile acid transport in human obesity. J. Clin. Endocrinol. Metab. 101, 1935–1944 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Osuna-Prieto, F. J. et al. Plasma levels of bile acids are related to cardiometabolic risk factors in young adults. J. Clin. Endocrinol. Metab. 107, 715–723 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Mercer, K. E. et al. Exercise training and diet-induced weight loss increase markers of hepatic bile acid (BA) synthesis and reduce serum total BA concentrations in obese women. Am. J. Physiol. Endocrinol. Metab. 320, E864–E873 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maurer, A. et al. Divergence in aerobic capacity impacts bile acid metabolism in young women. J. Appl. Physiol. 1985(129), 768–778 (2020).

    Article 

    Google Scholar 

  • Tveter, K. M., Mezhibovsky, E., Wu, Y. & Roopchand, D. E. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol. Ther. 248, 108457 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Byrd, D. A. et al. An investigation of cross-sectional associations of a priori-selected dietary components with circulating bile acids. Am. J. Clin. Nutr. 114, 1802–1813 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, R. S., Kelly, M. P. & Kelly, P. Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165936 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niu, Y.-C. et al. Histidine and arginine are associated with inflammation and oxidative stress in obese women. Br. J. Nutr. 108, 57–61 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maltais-Payette, I. et al. Circulating glutamate concentration as a biomarker of visceral obesity and associated metabolic alterations. Nutr. Metab. 15, 78 (2018).

    Article 
    CAS 

    Google Scholar 

  • DiNicolantonio, J. J., McCarty, M. F. & OKeefe, J. H. Role of dietary histidine in the prevention of obesity and metabolic syndrome. Open Heart 5, e000676 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quesada-Vázquez, S. et al. Potential therapeutic implications of histidine catabolism by the gut microbiota in NAFLD patients with morbid obesity. Cell Rep. Med. 4, 101341 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, H., Li, K., Wei, J., Lin, Y. & Liu, Y. The contradictory role of branched-chain amino acids in lifespan and insulin resistance. Front. Nutr. 10, 1189982 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Driuchina, A. et al. Identification of gut microbial lysine and histidine degradation and cyp-dependent metabolites as biomarkers of fatty liver disease. mBio 14, e0266322 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Maas, M. N., Hintzen, J. C. J., Porzberg, M. R. B. & Mecinović, J. Trimethyllysine: From carnitine biosynthesis to epigenetics. Int. J. Mol. Sci. 21, 9451 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Modulating a prebiotic food source influences inflammation and immune-regulating gut microbes and metabolites: insights from the BE GONE trial. EBioMedicine 98, 104873 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Pipecolic acid confers systemic immunity by regulating free radicals. Sci. Adv. 4, eaar4509 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Y. et al. An adipo-biliary-uridine axis that regulates energy homeostasis. Science 355, eaaf5375 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. J. et al. Metabolomics associated with genome-wide association study related to the basal metabolic rate in overweight/obese Korean women. J. Med. Food 22, 499–507 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet. Food Funct. 12, 1829–1840 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, M. et al. Causal relationship between human blood metabolites and risk of ischemic stroke: A Mendelian randomization study. Front. Genet. 15, 1333454 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, N. & Zhao, Z. Intestinal aging is alleviated by uridine via regulating inflammation and oxidative stress in vivo and in vitro. Cell Cycle 21, 1519–1531 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abiri, B. et al. Association of vitamin D levels with anthropometric and adiposity indicators across all age groups: A systematic review of epidemiologic studies. Endocr. Connect. 13, e230394 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vranić, L., Mikolašević, I. & Milić, S. Vitamin D deficiency: Consequence or cause of obesity?. Medicina 55, 541 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, J. E., Pichiah, P. B. T. & Cha, Y.-S. Vitamin D and metabolic diseases: Growing roles of vitamin D. J. Obes. Metab. Syndr. 27, 223–232 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wamberg, L., Pedersen, S. B., Rejnmark, L. & Richelsen, B. Causes of vitamin D deficiency and effect of vitamin D supplementation on metabolic complications in obesity: A review. Curr. Obes. Rep. 4, 429–440 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Deriš, H. et al. Susceptibility of human plasma N-glycome to low-calorie and different weight-maintenance diets. Int. J. Mol. Sci. 23, 15772 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greto, V. L. et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int. J. Obes. 45, 1521–1531 (2021).

    Article 
    CAS 

    Google Scholar 

  • Noel, M. et al. the inflammation biomarker GlycA reflects plasma N-Glycan branching. Clin. Chem. 69, 80–87 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. Functional metabolomics characterizes a key role for N-Acetylneuraminic acid in coronary artery diseases. Circulation 137, 1374–1390 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferrannini, E. et al. Mannose is an insulin-regulated metabolite reflecting whole-body insulin sensitivity in man. Metabolism 102, 153974 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mardinoglu, A. et al. Plasma mannose levels are associated with incident type 2 diabetes and cardiovascular disease. Cell Metab. 26, 281–283 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamauchi, M. et al. Urinary level of l-fucose as a marker of alcoholic liver disease. Alcohol Clin. Exp. Res. 17, 268–271 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sakai, T. et al. Rapid, simple enzymatic assay of free l-fucose in serum and urine, and its use as a marker for cancer, cirrhosis, and gastric ulcers. Clin. Chem. 36, 474–476 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Htun, K. T. et al. Identification of metabolic phenotypes in young adults with obesity by 1H NMR metabolomics of blood serum. Life 11, 574 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rios, S. et al. Plasma metabolite profiles associated with the World Cancer Research Fund/American Institute for Cancer Research lifestyle score and future risk of cardiovascular disease and type 2 diabetes. Cardiovasc. Diabetol. 22, 252 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, Y.-H., Ma, X., Zhao, J.-C., Wang, X.-Q. & Gao, C.-Q. Succinate metabolism and its regulation of host–microbe interactions. Gut Microbes 15, 2190300 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Y.-M., Shin, J.-Y., Kim, S.-A., Jacobs, D. R. & Lee, D.-H. Can habitual exercise help reduce serum concentrations of lipophilic chemical mixtures? Association between physical activity and persistent organic pollutants. Diabetes Metab. J. 44, 764–774 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pelletier, C., Després, J.-P. & Tremblay, A. Plasma organochlorine concentrations in endurance athletes and obese individuals. Med. Sci. Sports Exerc. 34, 1971–1975 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, Y. & Fang, M. Nutritional and environmental contaminant exposure: A tale of two co-existing factors for disease risks. Environ. Sci. Technol. 54, 14793–14796 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jujić, A. et al. Antibodies against phosphorylcholine in hospitalized versus non-hospitalized obese subjects. Sci. Rep. 11, 20246 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapenna, D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res. Rev. 92, 102066 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, Y. P. & Kumar, H. Tryptamine: A privileged scaffold for the management of Alzheimer’s disease. Drug Dev. Res. 84, 1578–1594 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alvarenga, L., Ferreira, M. S., Kemp, J. A. & Mafra, D. The role of betaine in patients with chronic kidney disease: A narrative review. Curr. Nutr. Rep. 11, 395–406 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palmnäs, M. et al. Perspective: Metabotyping—a potential personalized nutrition strategy for precision prevention of cardiometabolic disease. Adv. Nutr. 11, 524–532 (2020).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *