Mendelian randomization evidence for the causal effect of mental well-being on healthy aging

0
Mendelian randomization evidence for the causal effect of mental well-being on healthy aging
  • Oeppen, J. & Vaupel, J. W. Demography. Broken limits to life expectancy. Science 296, 1029–1031 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ageing: a 21st century public health challenge? Lancet Public Health 2, e297 (2017).

  • Garmany, A., Yamada, S. & Terzic, A. Longevity leap: mind the healthspan gap. NPJ Regen. Med. 6, 57 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mental health: strengthening our response. World Health Organization (17 June 2022).

  • Prince, M. et al. No health without mental health. Lancet 370, 859–877 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Mak, H. W. et al. Hobby engagement and mental wellbeing among people aged 65 years and older in 16 countries. Nat. Med. 29, 2233–2240 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steptoe, A. et al. Subjective wellbeing, health and ageing. Lancet 385, 640–648 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Jacobs, J. M. et al. Optimism and longevity beyond age 85. J. Gerontol. A Biol. Sci. Med. Sci. 76, 1806–1813 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Santamaria-Garcia, H. et al. Factors associated with healthy aging in Latin American populations. Nat. Med. 29, 2248–2258 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sekula, P., Del Greco M, F., Pattaro, C. & Köttgen, A. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 27, 3253–3265 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Killingsworth, M. A., Kahneman, D. & Mellers, B. Income and emotional well-being: a conflict resolved. Proc. Natl Acad. Sci. USA 120, e2208661120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridley, M., Rao, G., Schilbach, F. & Patel, V. Poverty, depression, and anxiety: causal evidence and mechanisms. Science 370, eaay0214 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, C. J. et al. Mendelian randomization evidence for the causal effects of socio-economic inequality on human longevity among Europeans. Nat. Hum. Behav. 7, 1357–1370 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Timmers, P. R. H. J. et al. Mendelian randomization of genetically independent aging phenotypes identifies LPA and VCAM1 as biological targets for human aging. Nat. Aging 2, 19–30 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Rosoff, D. B. et al. Multivariate genome-wide analysis of aging-related traits identifies novel loci and new drug targets for healthy aging. Nat. Aging 3, 1020–1035 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. JAMA 318, 1925–1926 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Carter, A. R. et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur. J. Epidemiol. 36, 465–478 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Killingsworth, M. A. Experienced well-being rises with income, even above $75,000 per year. Proc. Natl Acad. Sci. USA 118, e2016976118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krieger, N., Williams, D. R. & Moss, N. E. Measuring social class in US public health research: concepts, methodologies, and guidelines. Annu. Rev. Public Health 18, 341–378 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khan, I. et al. Surrogate adiposity markers and mortality. JAMA Netw. Open 6, e2334836 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, A. A. & Stolzing, A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18, e13048 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, C. et al. Causal associations of sarcopenia-related traits with cardiometabolic disease and Alzheimer’s disease and the mediating role of insulin resistance: a Mendelian randomization study. Aging Cell 22, e13923 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 395, 795–808 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Levine, G. N. et al. Psychological health, well-being, and the mind-heart-body connection: a scientific statement from the American Heart Association. Circulation 143, e763–e783 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Dalsgaard, S., Østergaard, S. D., Leckman, J. F., Mortensen, P. B. & Pedersen, M. G. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet 385, 2190–2196 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Sun, S. et al. Association of psychiatric comorbidity with the risk of premature death among children and adults with attention-deficit/hyperactivity disorder. JAMA Psychiatry 76, 1141–1149 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

    Article 

    Google Scholar 

  • Robson, D. & Gray, R. Serious mental illness and physical health problems: a discussion paper. Int. J. Nurs. Stud. 44, 457–466 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Independent associations of education, intelligence, and cognition with hypertension and the mediating effects of cardiometabolic risk factors: a mendelian randomization study. Hypertension 80, 192–203 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sturgeon, J. A., Finan, P. H. & Zautra, A. J. Affective disturbance in rheumatoid arthritis: psychological and disease-related pathways. Nat. Rev. Rheumatol. 12, 532–542 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X. et al. Investigating the relationship between depression and breast cancer: observational and genetic analyses. BMC Med. 21, 170 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dockray, S. & Steptoe, A. Positive affect and psychobiological processes. Neurosci. Biobehav. Rev. 35, 69–75 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, W. et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49, 1450–1457 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carreras-Torres, R. et al. Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. Br. Med. J. 361, k1767 (2018).

    Article 

    Google Scholar 

  • Klimentidis, Y. C. et al. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int. J. Obes. 42, 1161–1176 (2018).

    Article 
    CAS 

    Google Scholar 

  • Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA 326, 1614–1621 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Baselmans, B. M. L. et al. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 51, 445–451 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, R. E. et al. MRC IEU UK Biobank GWAS Pipeline Version 2. University of Bristol (2019).

  • Ko, H. et al. Genome-wide association study of occupational attainment as a proxy for cognitive reserve. Brain 145, 1436–1448 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Atkins, J. L. et al. A genome-wide association study of the frailty index highlights brain pathways in ageing. Aging Cell 20, e13459 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, S. E. et al. Molecular genetic contributions to self-rated health. Int. J. Epidemiol. 46, 994–1009 (2017).

    PubMed 

    Google Scholar 

  • Zenin, A. et al. Identification of 12 genetic loci associated with human healthspan. Commun. Biol. 2, 41 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Timmers, P. R. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. eLife 8, e39856 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 10, 3669 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 

    Google Scholar 

  • International HapMap 3 Consortium et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article 

    Google Scholar 

  • Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grant, A. J. & Burgess, S. Pleiotropy robust methods for multivariable Mendelian randomization. Stat. Med. 40, 5813–5830 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burgess, S. et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res. 4, 186 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mounier, N. & Kutalik, Z. Bias correction for inverse variance weighting Mendelian randomization. Genet. Epidemiol. 47, 314–331 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G. & Sheets, V. A comparison of methods to test mediation and other intervening variable effects. Psychol. Methods 7, 83–104 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181, 251–260 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glickman, M. E., Rao, S. R. & Schultz, M. R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 67, 850–857 (2014).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *