Air pollution and risk of 32 health conditions: outcome-wide analyses in a population-based prospective cohort in Southwest China | BMC Medicine
WHO. WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization; 2021.
Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol. 2020;17(10):656–72.
Google Scholar
Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 2: air pollution and organ systems. Chest. 2019;155(2):417–26.
Google Scholar
Liu L, Zhang Y, Yang Z, Luo S, Zhang Y. Long-term exposure to fine particulate constituents and cardiovascular diseases in Chinese adults. J Hazard Mater. 2021;416: 126051.
Google Scholar
Wright N, Newell K, Chan KH, Gilbert S, Hacker A, Lu Y, et al. Long-term ambient air pollution exposure and cardio-respiratory disease in China: findings from a prospective cohort study. Environ Health. 2023;22(1):30.
Google Scholar
Wu Y, Zhang S, Qian SE, Cai M, Li H, Wang C, et al. Ambient air pollution associated with incidence and dynamic progression of type 2 diabetes: a trajectory analysis of a population-based cohort. BMC Med. 2022;20(1):375. https://doi.org/10.1186/s12916-022-02573-0.
Wang J, Li D, Sun Y, Tian Y. Air pollutants, genetic factors, and risk of chronic kidney disease: Findings from the UK Biobank. Ecotoxicol Environ Saf. 2022;247: 114219.
Google Scholar
Zhao Y, Cai J, Zhu X, van Donkelaar A, Martin RV, Hua J, et al. Fine particulate matter exposure and renal function: a population-based study among pregnant women in China. Environ Int. 2020;141:105805.
Google Scholar
Wen F, Li B, Cao H, Li P, Xie Y, Zhang F, et al. Association of long-term exposure to air pollutant mixture and incident cardiovascular disease in a highly polluted region of China. Environ Pollut. 2023;328:121647.
Google Scholar
Mousavibaygei SR, Bisadi A, ZareSakhvidi F. Outdoor air pollution exposure, bone mineral density, osteoporosis, and osteoporotic fractures: a systematic review and meta-analysis. Sci Total Environ. 2023;865: 161117.
Google Scholar
Tsai MY, Hoek G, Eeftens M, de Hoogh K, Beelen R, Beregszaszi T, et al. Spatial variation of PM elemental composition between and within 20 European study areas–results of the ESCAPE project. Environ Int. 2015;84:181–92.
Google Scholar
Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med. 2009;179(12):1115–20.
Google Scholar
Rule AM, Koehler KA. Particle constituents and oxidative potential: insights into differential fine particulate matter toxicity. Am J Respir Crit Care Med. 2022;206(11):1310–2.
Google Scholar
Du X, Zhang Y, Liu C, Fang J, Zhao F, Chen C, et al. Fine particulate matter constituents and sub-clinical outcomes of cardiovascular diseases: a multi-center study in China. Sci Total Environ. 2021;759:143555.
Google Scholar
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol. 2022;19(1):67.
Google Scholar
Swaen GMH, Urlings MJE, Zeegers MP. Outcome reporting bias in observational epidemiology studies on phthalates. Ann Epidemiol. 2016;26(8):597–9.e4.
Google Scholar
VanderWeele TJ. Outcome-wide Epidemiology. Epidemiology. 2017;28(3):399–402.
Google Scholar
Wang W, Jin YH, Liu M, He Q, Xu JY, Wang MQ, et al. Guidance of development, validation, and evaluation of algorithms for populating health status in observational studies of routinely collected data (DEVELOP-RCD). Mil Med Res. 2024;11(1):52.
Google Scholar
VanderWeele TJ. On the promotion of human flourishing. Proc Natl Acad Sci. 2017;114(31):8148–56.
Google Scholar
Zhao X, Hong F, Yin J, Tang W, Zhang G, Liang X, et al. Cohort Profile: the China Multi-Ethnic Cohort (CMEC) study. Int J Epidemiol. 2021;50(3):721–l.
Google Scholar
Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.
Google Scholar
Xiao X, Qin Z, Lv X, Dai Y, Ciren Z, Yangla Y, et al. Dietary patterns and cardiometabolic risks in diverse less-developed ethnic minority regions: results from the China Multi-Ethnic Cohort (CMEC) study. Lancet Reg Health West Pac. 2021;15:100252.
Google Scholar
Wei J, Li Z, Cribb M, Huang W, Xue W, Sun L, et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmospheric Chem Physics. 2020;20(6):3273–89.
Google Scholar
Wei J, Li Z, Lyapustin A, Sun L, Peng Y, Xue W, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sensing Environ. 2021;252:112136. https://doi.org/10.1016/j.rse.2020.112136.
Wei J, Liu S, Li Z, Liu C, Qin K, Liu X, et al. Ground-level NO(2) surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environ Sci Technol. 2022;56(14):9988–98.
Google Scholar
Wei J, Li Z, Li K, Dickerson RR, Pinker RT, Wang J, et al. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing Environ. 2022;270:112775.
Google Scholar
Wei J, Li Z, Chen X, Li C, Sun Y, Wang J, et al. Separating daily 1 km PM(2.5) inorganic chemical composition in China since 2000 via deep learning integrating ground, satellite, and model data. Environ Sci Technol. 2023;57(46):18282–95. https://doi.org/10.1021/acs.est.3c00272.
Inness A, Ades M, Agustí-Panareda A, Barré J, Benedictow A, Blechschmidt A-M, et al. The CAMS reanalysis of atmospheric composition. Atmos Chem Phys. 2019;19(6):3515–56.
Google Scholar
Wei J, Huang W, Li Z, Xue W, Peng Y, Sun L, et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sensing Environ. 2019;231:231.
Google Scholar
Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat. 2015;20(1):100–20.
Google Scholar
Keil AP, Buckley JP, O’Brien KM, Ferguson KK, Zhao S, White AJ. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect. 2020;128(4):47004.
Google Scholar
Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Web site and R package for computing E-values. Epidemiology. 2018;29(5):e45–7.
Google Scholar
Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-based chronic disease, adiposity and dysglycemia drivers: JACC State-of-the-art review. J Am Coll Cardiol. 2020;75(5):525–38.
Google Scholar
Luo H, Zhang Q, Niu Y, Kan H, Chen R. Fine particulate matter and cardiorespiratory health in China: a systematic review and meta-analysis of epidemiological studies. J Environ Sci (China). 2023;123:306–16.
Google Scholar
Lo WC, Ho CC, Tseng E, Hwang JS, Chan CC, Lin HH. Long-term exposure to ambient fine particulate matter (PM2.5) and associations with cardiopulmonary diseases and lung cancer in Taiwan: a nationwide longitudinal cohort study. Int J Epidemiol. 2022;51(4):1230–42.
Google Scholar
Marchetti P, Miotti J, Locatelli F, Antonicelli L, Baldacci S, Battaglia S, et al. Long-term residential exposure to air pollution and risk of chronic respiratory diseases in Italy: the BIGEPI study. Sci Total Environ. 2023;884:163802.
Google Scholar
Boogaard H, Patton AP, Atkinson RW, Brook JR, Chang HH, Crouse DL, et al. Long-term exposure to traffic-related air pollution and selected health outcomes: a systematic review and meta-analysis. Environ Int. 2022;164:107262.
Google Scholar
Wu Y, Shen P, Yang Z, Yu L, Zhu Z, Li T, et al. Association of walkability and fine particulate matter with chronic obstructive pulmonary disease: a cohort study in China. Sci Total Environ. 2023;858(Pt 1):159780.
Google Scholar
Shin S, Bai L, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, et al. Air pollution as a risk factor for incident chronic obstructive pulmonary disease and asthma. A 15-year population-based cohort study. Am J Respir Crit Care Med. 2021;203(9):1138–48.
Google Scholar
Park J, Kim HJ, Lee CH, Lee CH, Lee HW. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Environ Res. 2021;194: 110703.
Google Scholar
Xu J, Shi Y, Chen G, Guo Y, Tang W, Wu C, et al. Joint effects of long-term exposure to ambient fine particulate matter and ozone on asthmatic symptoms: prospective cohort study. JMIR Public Health Surveill. 2023;9:e47403.
Google Scholar
O’Neill LA. Immunology. How frustration leads to inflammation. Science. 2008;320(5876):619–20.
Google Scholar
Li FR, Liao J, Zhu B, Li X, Cheng Z, Jin C, et al. Long-term exposure to air pollution and incident non-alcoholic fatty liver disease and cirrhosis: a cohort study. Liver Int. 2023;43(2):299–307.
Google Scholar
Guo B, Guo Y, Nima Q, Feng Y, Wang Z, Lu R, et al. Exposure to air pollution is associated with an increased risk of metabolic dysfunction-associated fatty liver disease. J Hepatol. 2022;76(3):518–25.
Google Scholar
Vignal C, Guilloteau E, Gower-Rousseau C, Body-Malapel M. Review article: epidemiological and animal evidence for the role of air pollution in intestinal diseases. Sci Total Environ. 2021;757:143718.
Google Scholar
Elten M, Benchimol EI, Fell DB, Kuenzig ME, Smith G, Chen H, et al. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: a population-based cohort study. Environ Int. 2020;138:105676.
Google Scholar
Li FR, Wu KY, Fan WD, Chen GC, Tian H, Wu XB. Long-term exposure to air pollution and risk of incident inflammatory bowel disease among middle and old aged adults. Ecotoxicol Environ Saf. 2022;242: 113835.
Google Scholar
Fang T, Guo H, Zeng L, Verma V, Nenes A, Weber RJ. Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environ Sci Technol. 2017;51(5):2611–20.
Google Scholar
Dujardin CE, Mars RAT, Manemann SM, Kashyap PC, Clements NS, Hassett LC, et al. Impact of air quality on the gastrointestinal microbiome: a review. Environ Res. 2020;186:109485.
Google Scholar
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, et al. Long-term air pollution exposure and diabetes risk in American older adults: a national secondary data-based cohort study. Environ Pollut. 2023;320:121056. https://doi.org/10.1016/j.envpol.2023.121056.
Lee S, Park H, Kim S, Lee EK, Lee J, Hong YS, et al. Fine particulate matter and incidence of metabolic syndrome in non-CVD patients: a nationwide population-based cohort study. Int J Hyg Environ Health. 2019;222(3):533–40.
Google Scholar
Li J, Yao Y, Xie W, Wang B, Guan T, Han Y, et al. Association of long-term exposure to PM2.5 with blood lipids in the Chinese population: findings from a longitudinal quasi-experiment. Environ Int. 2021;151:106454.
Google Scholar
Duan L, Zhang M, Cao Y, Du Y, Chen M, Xue R, et al. Exposure to ambient air pollutants is associated with an increased incidence of hyperuricemia: a longitudinal cohort study among Chinese government employees. Environ Res. 2023;235:116631.
Google Scholar
Honda T, Pun VC, Manjourides J, Suh H. Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ Int. 2017;101:125–32.
Google Scholar
Liu F, Zhou F, Zhang K, Wu T, Pan M, Wang X, et al. Effects of air pollution and residential greenness on sleep disorder: a 8-year nationwide cohort study. Environ Res. 2023;220: 115177.
Google Scholar
Zhang C, Zhang B, Ling Z, Xiao Y, Li S, Yu Y, et al. Long-term exposure to ambient black carbon is associated with sleep disturbance in college students. Sci Total Environ. 2022;838(Pt 2):156066.
Google Scholar
Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: a cohort study. Lancet Planetary Health. 2017;1(7):e267–76.
Google Scholar
Xu C, Weng Z, Liu Q, Xu J, Liang J, Li W, et al. Association of air pollutants and osteoporosis risk: the modifying effect of genetic predisposition. Environ Int. 2022;170:107562. https://doi.org/10.1016/j.envint.2022.107562.
Fitriyah A, Nikolenko DA, Abdelbasset WK, Maashi MS, Jalil AT, Yasin G, et al. Exposure to ambient air pollution and osteoarthritis; an animal study. Chemosphere. 2022;301:134698. https://doi.org/10.1016/j.chemosphere.2022.134698.
Jiang W, Chen H, Li H, Zhou Y, Xie M, Zhou C, et al. The Short-term effects and burden of ambient air pollution on hospitalization for type 2 diabetes: time-stratified case-crossover evidence from Sichuan, China. GeoHealth. 2023;7(11):e2023GH000846.
Google Scholar
Zhao S, Yu Y, Yin D, Qin D, He J, Dong L. Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin. China Sci Total Environ. 2018;624:540–57.
Google Scholar
Wu G, Cai M, Wang C, Zou H, Wang X, Hua J, et al. Ambient air pollution and incidence, progression to multimorbidity and death of hypertension, diabetes, and chronic kidney disease: a national prospective cohort. Sci Total Environ. 2023;881:163406.
Google Scholar
Kelly FJ, Fussell JC. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ. 2012;60:504–26.
Google Scholar
Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med. 2007;176(4):370–6.
Google Scholar
Wu S, Wang B, Yang D, Wei H, Li H, Pan L, et al. Ambient particulate air pollution and circulating antioxidant enzymes: a repeated-measure study in healthy adults in Beijing. China Environ Pollut. 2016;208(Pt A):16–24.
Google Scholar
Liu C, Cai J, Qiao L, Wang H, Xu W, Li H, et al. The acute effects of fine particulate matter constituents on blood inflammation and coagulation. Environ Sci Technol. 2017;51(14):8128–37.
Google Scholar
Adachi K, Buseck PR. Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere. Atmos Environ. 2015;100:1–9.
Google Scholar
Zhang Y, Yang L, Bie S, Zhao T, Huang Q, Li J, et al. Chemical compositions and the impact of sea salt in atmospheric PM1 and PM2.5 in the coastal area. Atmospheric Research. 2021;250:250.
Google Scholar
Arfin T, Pillai AM, Mathew N, Tirpude A, Bang R, Mondal P. An overview of atmospheric aerosol and their effects on human health. Environ Sci Pollut Res Int. 2023;30(60):125347–69.
Google Scholar
Happo MS, Hirvonen M-R, Halinen AI, Jalava PI, Pennanen AS, Sillanpaa M, et al. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe. Inhal Toxicol. 2008;20(14):1215–31.
Google Scholar
Sun S, Qiu H, Ho KF, Tian L. Chemical components of respirable particulate matter associated with emergency hospital admissions for type 2 diabetes mellitus in Hong Kong. Environ Int. 2016;97:93–9.
Google Scholar
Moller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia AC, Andersen MH, et al. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol. 2016;46(5):437–76.
Google Scholar
Mallah MA, Changxing L, Mallah MA, Noreen S, Liu Y, Saeed M, et al. Polycyclic aromatic hydrocarbon and its effects on human health: an overeview. Chemosphere. 2022;296:133948.
Google Scholar
Holme JA, Brinchmann BC, Refsnes M, Lag M, Ovrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health. 2019;18(1):74.
Google Scholar
Hattemer-Frey HA, Travis CC. Benzo-a-pyrene: environmental partitioning and human exposure. Toxicol Ind Health. 1991;7(3):141–57.
Google Scholar
Banat IM. Characterization of biosurfactants and their use in pollution removal – state of the art. (Review). Acta Biotechnologica. 2004;15(3):251–67.
Google Scholar
Alshaarawy O, Elbaz HA, Andrew ME. The association of urinary polycyclic aromatic hydrocarbon biomarkers and cardiovascular disease in the US population. Environ Int. 2016;89–90:174–8.
Google Scholar
link